
A: Data B: Stack C: Contact D: Knapsack E: Stone F: Polygon

Nanyang Programming Contest 2025
Stage 3: Welcome AY25/26

Lee Zong Yu, Pu Fanyi, Zhou Xuhang

Nanyang Technological University

30 August 2025

Lee Zong Yu, Pu Fanyi, Zhou Xuhang Nanyang Technological University
Nanyang Programming Contest 2025 1 / 49



A: Data B: Stack C: Contact D: Knapsack E: Stone F: Polygon

• Easy
• Problem A: Data - Simulation
• Problem B: Stack - Stack & Simulation

• Medium
• Problem C: Contact - Rolling hash or Trie or Binary Search
• Problem D: Knapsack - Greedy
• Problem E: Stone - Graph traversal & Map

• Hard
• Problem F: Polygon - Range DP

Lee Zong Yu, Pu Fanyi, Zhou Xuhang Nanyang Technological University
Nanyang Programming Contest 2025 2 / 49



A: Data B: Stack C: Contact D: Knapsack E: Stone F: Polygon

Problem A: Data

Problem Author: Zhou Xuhang
Developement Zhou Xuhang

Editorial: Zhou Xuhang

Lee Zong Yu, Pu Fanyi, Zhou Xuhang Nanyang Technological University
Nanyang Programming Contest 2025 3 / 49



A: Data B: Stack C: Contact D: Knapsack E: Stone F: Polygon

Abridged Problem Statement

Abridged Problem Statement
Use one integer C to compress four small integer. Given q queries
including set this four integer and output the current C value.

Initial C is between 0 and MAX_INT .

Lee Zong Yu, Pu Fanyi, Zhou Xuhang Nanyang Technological University
Nanyang Programming Contest 2025 4 / 49



A: Data B: Stack C: Contact D: Knapsack E: Stone F: Polygon

Bit Operation

• To implement this function, we need to use some basic bit
operation.

• For the easiest one, SET_DIRECTION, the thing you want to
do is to clear the last 2 bits and do C = C |newDir .

• So the whole process would be
C = C&(11...11100),C | = newDir

• Similarly, for the Offset, the process would be
C = C&(11..10000000011),C = C |(newOffset << 2)

• Generally, the set function can be implemented by bitwise
Not/OR/AND.

Lee Zong Yu, Pu Fanyi, Zhou Xuhang Nanyang Technological University
Nanyang Programming Contest 2025 5 / 49



A: Data B: Stack C: Contact D: Knapsack E: Stone F: Polygon

Something to say

• Though in this contest we cannot forbid you from storing four
attributes locally and compute the C value once required, you
should only use one integer for the whole task if in a tech
interview.

• Also you need to be able to decompress such as implementing
int GET_ID(int C)...

Lee Zong Yu, Pu Fanyi, Zhou Xuhang Nanyang Technological University
Nanyang Programming Contest 2025 6 / 49



A: Data B: Stack C: Contact D: Knapsack E: Stone F: Polygon

Problem B: Stack

Problem Author: Zhou Xuhang
Developement Zhou Xuhang

Editorial: Zhou Xuhang

Lee Zong Yu, Pu Fanyi, Zhou Xuhang Nanyang Technological University
Nanyang Programming Contest 2025 7 / 49



A: Data B: Stack C: Contact D: Knapsack E: Stone F: Polygon

Stack

Abridged Problem Statement
Given a string S. Three consecutive identical char will be removed.
Output the final string.

• Subtask1: N <= 100
• Subtask2: N <= 100000

Lee Zong Yu, Pu Fanyi, Zhou Xuhang Nanyang Technological University
Nanyang Programming Contest 2025 8 / 49



A: Data B: Stack C: Contact D: Knapsack E: Stone F: Polygon

Subtask 1 & 2

Brute Force
Use a while loop and figure out a group of consecutive identical
char. Remove them and continue the loop. The time complexity is
O(N2)

Stack
It’s a hint in the problem name. Push every char into the stack
and once the top 3 of the stack is same, then pop out them. The
final string is all char in the stack from the bottom up. The time
complexity is O(N).

Lee Zong Yu, Pu Fanyi, Zhou Xuhang Nanyang Technological University
Nanyang Programming Contest 2025 9 / 49



A: Data B: Stack C: Contact D: Knapsack E: Stone F: Polygon

Proof of correctness

• Brute Force: The correctness of brute force is obvious. If
there are no char to be removed then stop. It is always correct
but may get time limit with strong test data.

• Stack: Image the remove process if we push the char one by
one. Removal will only happen for the top of the stack. Once
these chars are removed from the stack, the previous chars is
available to remove. Thus this algorithm works well for case
"aabbcccba".

Lee Zong Yu, Pu Fanyi, Zhou Xuhang Nanyang Technological University
Nanyang Programming Contest 2025 10 / 49



A: Data B: Stack C: Contact D: Knapsack E: Stone F: Polygon

Problem C: Contact

Problem Author: Lee Zong Yu
Developement Lee Zong Yu

Editorial: Lee Zong Yu

Lee Zong Yu, Pu Fanyi, Zhou Xuhang Nanyang Technological University
Nanyang Programming Contest 2025 11 / 49



A: Data B: Stack C: Contact D: Knapsack E: Stone F: Polygon

Abridged Problem Statement

Abridged Problem Statement
Given n phone strings. For each query, given a query string, output
the number of strings with a prefix the same as the query string.

n is the number of strings
q is the number of query strings
maxlen is the maximum length of each string
sumlen is the sum of the length of each string

• Subtask 1: 1 ≤ n, q,maxlen, sumlen ≤ 100
• Subtask 2: n, q ≤ 105, sumlen ≤ 2 · 106, maxlen ≤ 1000
• Subtask 3: n, q ≤ 105,maxlen, sumlen ≤ 2 · 106

Lee Zong Yu, Pu Fanyi, Zhou Xuhang Nanyang Technological University
Nanyang Programming Contest 2025 12 / 49



A: Data B: Stack C: Contact D: Knapsack E: Stone F: Polygon

Subtask 1

Complete Search

• For each query string, enumerate all phone numbers and do a
check between the phone number and the query string

• To do a check, you can enumerate the index to the length of
the query string to check if the string are equal at all indexes.

• Time complexity: O(n · q · maxlen)

Lee Zong Yu, Pu Fanyi, Zhou Xuhang Nanyang Technological University
Nanyang Programming Contest 2025 13 / 49



A: Data B: Stack C: Contact D: Knapsack E: Stone F: Polygon

Subtask 2

• 1 ≤ n, q ≤ 105

• 1 ≤ sumlen ≤ 2 · 106

• 1 ≤ maxlen ≤ 1000

HashMap

• Precompute: For each phones string, you can generate all
the possible prefixes. Then you store them as a key in a
map/dict (python) with value 1. If there are multiple key that
is the same, you just increment the value. Hence, the key is
the prefix and the value is the number of times occurs among
all phones strings.

• Query: For each query, you just need to access the map/dict
to get the count.

Lee Zong Yu, Pu Fanyi, Zhou Xuhang Nanyang Technological University
Nanyang Programming Contest 2025 14 / 49



A: Data B: Stack C: Contact D: Knapsack E: Stone F: Polygon

Examples of Precomputations and Query

Phone String:
• 001

All Prefixes
• 0
• 00
• 001

• 01
All Prefixes

• 0
• 01

Map:

Prefix Count
0 2
00 1
001 1
01 1

query: 00
By checking the
table for the count,
the answer is 1

Lee Zong Yu, Pu Fanyi, Zhou Xuhang Nanyang Technological University
Nanyang Programming Contest 2025 15 / 49



A: Data B: Stack C: Contact D: Knapsack E: Stone F: Polygon

Time Complexity

• Precompute: There are O(sumlen) number of prefixes
among all n strings, each with length at most O(maxlen).
Hence, the complexity to precompute a string is
O(sumlen · maxlen). Moreover, if the map is done with
hashing, it is expected O(1), so we can ignore it for now.

• Query: The time complexity in accessing the map is
expected O(1), hence we can ignore them as well. Although
there are q query, the number of characters that need to read
to access the map is O(sumlen). The time complexity is
O(sumlen)

• The overall time complexity is O(sumlen · maxlen)

Lee Zong Yu, Pu Fanyi, Zhou Xuhang Nanyang Technological University
Nanyang Programming Contest 2025 16 / 49



A: Data B: Stack C: Contact D: Knapsack E: Stone F: Polygon

Subtask 3

Actually there are three different solutions for this problem!

Continue from Subtask 2
• Realise that when maxlen ≤ 105, the time complexity fails.

The main costly task lies in the precomputation.
• Everytime when we map a prefix, we need to map an entire

string so it introduces a multiple of O(maxlen) in time
complexity

• We can use a Rolling hash to progressively hash the string so
that we just map a number instead of the entire string.

Lee Zong Yu, Pu Fanyi, Zhou Xuhang Nanyang Technological University
Nanyang Programming Contest 2025 17 / 49



A: Data B: Stack C: Contact D: Knapsack E: Stone F: Polygon

Solution 1 - Rolling hash

• Click here for the introduction to the data structure
• Given a string s, denote Hash[i ] as the hash value of the

substring of s prefix at i .
• Hash[i ] = (Hash[i − 1] ∗ 11 + s[i ] + 1)%MOD,

Hash[0] = s[i ] + 1 and MOD is a large prime number
• In order to prevent collision, it is best to set MOD to a prime

about 1018 such as 264 − 1 (i.e. the range of integer for an
unsigned long long in C++)

• Time complexity: O(sumlen)

Lee Zong Yu, Pu Fanyi, Zhou Xuhang Nanyang Technological University
Nanyang Programming Contest 2025 18 / 49

https://www.geeksforgeeks.org/dsa/introduction-to-rolling-hash-data-structures-and-algorithms/


A: Data B: Stack C: Contact D: Knapsack E: Stone F: Polygon

Solution 2 - Trie

• https://www.geeksforgeeks.org/dsa/
trie-insert-and-search/

• Building: Use may build a Trie to stores all the phone strings.
Each time, when you insert a string into the trie, increment
the value on each node on the trail by 1.

• Querying: For each query string, simply traverse through the
trie and print the value on the last node.

• Space complexity: There is at most O(sumlen) amount of
nodes and each nodes uses O(|Σ|) of space where Σ is the
types of characters appears in the string (i.e. ’0’ - ’9’). Hence,
the final space complexity is O(|Σ| · sumlen).

• Time complexity: O(sumlen) because the algorithm just needs
to enumerate through all the characters

Lee Zong Yu, Pu Fanyi, Zhou Xuhang Nanyang Technological University
Nanyang Programming Contest 2025 19 / 49

https://www.geeksforgeeks.org/dsa/trie-insert-and-search/
https://www.geeksforgeeks.org/dsa/trie-insert-and-search/


A: Data B: Stack C: Contact D: Knapsack E: Stone F: Polygon

Solution 3 - Binary Search

• Sort the phone strings in lexicographical order
• Search the lower bound and the upper bound of the query

string in the phone strings. The answer is the difference
between the lower bound and upper bound

• Time Complexity: O(sumlen · log(n)) because you need to
enumerate through all the query strings character and for each
character you need to do binary search on the phone strings.

The implementation might be a little bit difficult. Howevever, it is
usual in dealing with strings problems. We explain it in the next
slide.

Lee Zong Yu, Pu Fanyi, Zhou Xuhang Nanyang Technological University
Nanyang Programming Contest 2025 20 / 49



A: Data B: Stack C: Contact D: Knapsack E: Stone F: Polygon

Implementation Details

• Suppose the query string is of len k - the query string is
q1q2 . . . qk , qi is the i-th character of the string.

• We do an enumeration on the query string. We also maintain
the index of lower bound and upper bound of the sorted
phones strings, says l and r respectively. THe property of l
and r will be explained next.

• At i-th step
• All the phones strings from l to r should has the same prefix at

i − 1. (You may verify yourself)
• The character at i of all phones strings from l to r are

monotonic.
• Hence you just binary search the character qi to reset the

shrink the range of l and r
• By this time, all phones strings from new l and r should have

same prefix at i

Lee Zong Yu, Pu Fanyi, Zhou Xuhang Nanyang Technological University
Nanyang Programming Contest 2025 21 / 49



A: Data B: Stack C: Contact D: Knapsack E: Stone F: Polygon

Problem D: Knapsack

Problem Author: Lee Zong Yu
CodeForce Problem 1446A

Developement Lee Zong Yu
Editorial: Lee Zong Yu

Lee Zong Yu, Pu Fanyi, Zhou Xuhang Nanyang Technological University
Nanyang Programming Contest 2025 22 / 49

https://codeforces.com/problemset/problem/1446/A


A: Data B: Stack C: Contact D: Knapsack E: Stone F: Polygon

Abridged Problem Statement

Given knapsack with capacity W and n items. What is the
minimum number of items chosen such that the total weight is at
least half of the capacity.

• Subtask 1: There is at least one item ceil(C/2)
• Subtask 2: n ≤ 20
• Subtask 3: n,wi ,C ≤ 1e4
• Subtask 4: n ≤ 105, wi ,C ≤ 1012

Lee Zong Yu, Pu Fanyi, Zhou Xuhang Nanyang Technological University
Nanyang Programming Contest 2025 23 / 49



A: Data B: Stack C: Contact D: Knapsack E: Stone F: Polygon

Subtask 1 and 2

Subtask 1
• Just choose the item that is at least half of the capacity.
• The answer is 1

Subtask 2
• Brute Force through all the combinations of items.
• Among all the combinations that fulfil the condition, output

the length of the smallest combination.

Lee Zong Yu, Pu Fanyi, Zhou Xuhang Nanyang Technological University
Nanyang Programming Contest 2025 24 / 49



A: Data B: Stack C: Contact D: Knapsack E: Stone F: Polygon

Subtask 3

• The problem is a 0 − 1 Knapsack problem. Hence, just do the
DP where DP[i ] is the minimum number of items to achieve
total weight of i .

• For each item i , do a reverse enumeration from C −wi to 0, at
index j , set DP[j + wi ] to DP[j] + 1 if the resulting is smaller.

• Initially, DP[0] = 0 and all other DP is infinity.
• The answer is the minimum from DP[ceil(C/2)] to DP[C].
• The time complexity is O(n · C)

Lee Zong Yu, Pu Fanyi, Zhou Xuhang Nanyang Technological University
Nanyang Programming Contest 2025 25 / 49



A: Data B: Stack C: Contact D: Knapsack E: Stone F: Polygon

Subtask 4

It is a greedy solution.

Greedy Strategy

• Enumerate the items in descresing weight.
• Select the item if it does not cause the knapsack to exceed its

capacity. (In fact, we will proof that item can be selected
without exceeding the capacity later)

• Once the condition is met (total weight is at least half of the
capacity), stop the enumeration.

• The answer is number of items in knapsack.

Lee Zong Yu, Pu Fanyi, Zhou Xuhang Nanyang Technological University
Nanyang Programming Contest 2025 26 / 49



A: Data B: Stack C: Contact D: Knapsack E: Stone F: Polygon

Why Correct?

Recall wi ≤ C . We want to proof that following the greedy
strategy (select item until termination when condition met), there
is no item that will causes the knapsack to exceed its capacity.

Proof by Contradition

• Infer from assumption: Assume that there is such cases and
item j is the first item that make the knapsack to exceed its
capacity →

∑j
i=1 wi > C (eq1).

• Infer from algorithm: Since the algorithm is not terminated
before item j , it implies

∑j−1
i=1 wi <

⌈C
2
⌉

(eq2)
• Note that items are sorted in descresing of weights, so

wj ≤ wj−1 < C
2 + 1 (From eq2).

Lee Zong Yu, Pu Fanyi, Zhou Xuhang Nanyang Technological University
Nanyang Programming Contest 2025 27 / 49



A: Data B: Stack C: Contact D: Knapsack E: Stone F: Polygon

Proof continue

Recall all the equations we get
• ∑j

i=1 wi > C (eq1)
• ∑j−1

i=1 wi <
⌈C

2
⌉

(eq2)
• wj <

C
2 + 1 (eq3)

Proof by Contradition

• Hence,
∑j

i=1 wi =
∑j−1

i=1 wi + wj <
⌈C

2
⌉
+
⌈C

2
⌉
< C + 1 (eq2

+ eq3).
• It is a contradiction with eq1.

Lee Zong Yu, Pu Fanyi, Zhou Xuhang Nanyang Technological University
Nanyang Programming Contest 2025 28 / 49



A: Data B: Stack C: Contact D: Knapsack E: Stone F: Polygon

Proof of Optimality

We can refined that greedy strategy

Refined Greedy Strategy

• Enumerate the items in descresing weight.
• Select the item
• Once the condition is met (total weight is at least half of the

capacity), stop the enumeration.

Since you choose the largest item available, it is pretty easy to see
that this is optimal. A simple proof is just that there is no smaller
size item choice that would fulfied the condition (if not it would
have been chosen by greedy algorithm)

Lee Zong Yu, Pu Fanyi, Zhou Xuhang Nanyang Technological University
Nanyang Programming Contest 2025 29 / 49



A: Data B: Stack C: Contact D: Knapsack E: Stone F: Polygon

Problem E: Stone

Problem Author: Zhou Xuhang
Developement Lee Zong Yu

Editorial: Lee Zong Yu

Lee Zong Yu, Pu Fanyi, Zhou Xuhang Nanyang Technological University
Nanyang Programming Contest 2025 30 / 49



A: Data B: Stack C: Contact D: Knapsack E: Stone F: Polygon

Abridged Problem Statement?

Abridged Problem Statement
Given a 2D grid, and n stones. A stone is removable if there exists
some other stone at the same row/column. Find the maximum
number of stones removed.

• Subtask 1: It is guaranteed that originally between any pair of
stones i and j , there is a sequence of stones
(i , k1, k2, . . . , kw , j) for some integer w and each element in
the sequence is pairwise distinct such that two stones at any
neighbouring indices of the sequence has the same
row/column.

• Subtask 2: n, xi , yi ≤ 1000
• Subtask 3: n ≤ 1000, xi , yi ≤ 109

• Subtask 4: n ≤ 2 · 105, xi , yi ≤ 109

Lee Zong Yu, Pu Fanyi, Zhou Xuhang Nanyang Technological University
Nanyang Programming Contest 2025 31 / 49



A: Data B: Stack C: Contact D: Knapsack E: Stone F: Polygon

Observation

This problem required a crucial observation

Observation
• You may model the problem as a graph.

• Stone is a vertex
• There is an edge between two stones if and only if they are in

the same row or column.
• Given a connected graph, after you apply any DFS traversal,

the edges traversed by DFS form a tree (i.e. DFS Tree).
• An optimal strategy is always remove the leaf (i.e., the vertex

with degree 1 in the DFS tree).
• It is always valid because removing leaf remains the

connectivity between all other vertex in a tree.
• With this, only one vertex is left. So it is optimal.

Lee Zong Yu, Pu Fanyi, Zhou Xuhang Nanyang Technological University
Nanyang Programming Contest 2025 32 / 49



A: Data B: Stack C: Contact D: Knapsack E: Stone F: Polygon

Example

Examples of a DFS tree generated from a graph

Original Graph DFS Tree

Lee Zong Yu, Pu Fanyi, Zhou Xuhang Nanyang Technological University
Nanyang Programming Contest 2025 33 / 49



A: Data B: Stack C: Contact D: Knapsack E: Stone F: Polygon

Example (Cont.)

Examples of the removal of vertex from a DFS Tree

DFS Tree Order of Removal

Lee Zong Yu, Pu Fanyi, Zhou Xuhang Nanyang Technological University
Nanyang Programming Contest 2025 34 / 49



A: Data B: Stack C: Contact D: Knapsack E: Stone F: Polygon

Subtask 1

It is guaranteed that originally each stone has at least 1 other
stone with the same row/column.

• This subtask is intended for you to make the aforementioned
observation.

• The given constraint means that the graph constructed is
connected

• Hence, only one stone cannot be taken. The answer is n − 1

Lee Zong Yu, Pu Fanyi, Zhou Xuhang Nanyang Technological University
Nanyang Programming Contest 2025 35 / 49



A: Data B: Stack C: Contact D: Knapsack E: Stone F: Polygon

Subtask 2,3,4

• With the previous observation, you may realise that a
connected component will have exactly 1 stone is not
removable. Here for meaning of connected component

• Hence, the answer is just n minus the number of connected
components.

• Alternatively, you may simply do a DFS on the graph and
remove the stone in the order of Post-traversal order except
the last vertex (The vertex you first visited) which is not
removable.

• The different subtask means different implementation skills.

Lee Zong Yu, Pu Fanyi, Zhou Xuhang Nanyang Technological University
Nanyang Programming Contest 2025 36 / 49

https://www.geeksforgeeks.org/dsa/connected-component-definition-meaning-in-dsa/


A: Data B: Stack C: Contact D: Knapsack E: Stone F: Polygon

Subtask 2

You may do a DFS directly on the grid. That is, you do not
explicitly construct a graph.

• In your DFS, in determining which stone is in the same row
and same column as your current visiting stone, you may do
an enumeration on the row or column since the xy-coordinate
value is at most 1000.

• Time complexity: O(n · xymax ), where xymax is the maximum
value of the xy coordinate.

Lee Zong Yu, Pu Fanyi, Zhou Xuhang Nanyang Technological University
Nanyang Programming Contest 2025 37 / 49



A: Data B: Stack C: Contact D: Knapsack E: Stone F: Polygon

Subtask 3

Explicity construct the graph as told.
• Since n ≤ 1000, you may construct a graph by comparing the

coordinates of each pair of stones.
• That is, build n vertex, where the i-th vertex represents stone

i .
• There is an edge between vertex i and vertex j (i ̸= j) if stone

i and j are in the same row/column.
• Then, do the dfs/bfs traversal on the graph to find the

connected components.
• Time complexity is O(n2) because there is at most O(n2)

number of edges.

Lee Zong Yu, Pu Fanyi, Zhou Xuhang Nanyang Technological University
Nanyang Programming Contest 2025 38 / 49



A: Data B: Stack C: Contact D: Knapsack E: Stone F: Polygon

Subtask 4

This subtask extends the solution of Subtask 3.
Crucial Optimization
Suppose there are k stones in a row, you do not need to build
edges between any two stones (In this case k·(k−1)

2 edges). You
just need to build an edge k − 1 edges that connect all k stones

Lee Zong Yu, Pu Fanyi, Zhou Xuhang Nanyang Technological University
Nanyang Programming Contest 2025 39 / 49



A: Data B: Stack C: Contact D: Knapsack E: Stone F: Polygon

Subtask 4 (Implementation)

To implement the optimization,
• maintain a list of stones in each row/column.
• It can be done by a map/dict. The key is the row or column,

and the value is an array/list of stones Id.
• Two choices in connecting the stones

Choice 1 connect two stones neighbouring in the list
Choice 2 Create a virtual node representing the row/column and

connect every stone in the row/column to the virtual node.
• Then do a DFS/BFS on the graph generated

Lee Zong Yu, Pu Fanyi, Zhou Xuhang Nanyang Technological University
Nanyang Programming Contest 2025 40 / 49



A: Data B: Stack C: Contact D: Knapsack E: Stone F: Polygon

Time Complexity

• Each stone will appear twice (in the corresponding row or
column).

• Hence, the number of nodes is n and the number of edges is
at most 2n.

• The map is expected O(1).
• The time complexity is O(n)

Lee Zong Yu, Pu Fanyi, Zhou Xuhang Nanyang Technological University
Nanyang Programming Contest 2025 41 / 49



A: Data B: Stack C: Contact D: Knapsack E: Stone F: Polygon

Problem F: Polygon

Problem Author: Lee Zong Yu
Codeforce 2074G

Developement Pu Fanyi
Editorial: Pu Fanyi

Lee Zong Yu, Pu Fanyi, Zhou Xuhang Nanyang Technological University
Nanyang Programming Contest 2025 42 / 49

https://codeforces.com/problemset/problem/2074/G


A: Data B: Stack C: Contact D: Knapsack E: Stone F: Polygon

O(n4) Solution

• If we cut a single edge and consider the regular polygon as a
polyline of n points, then we can think of using some form of
Range DP to solve this problem.

• fl ,r denotes the optimal answer we can obtain when
considering only the points from l to r .

• We can consider point l connect with point k, then

f ∗l ,r = max
l<k<r

{fl+1,k−1 + fk+1,r + al · ak} , fl ,r = max
{

f ∗l ,r , fl+1,r
}

Lee Zong Yu, Pu Fanyi, Zhou Xuhang Nanyang Technological University
Nanyang Programming Contest 2025 43 / 49

https://usaco.guide/gold/dp-ranges


A: Data B: Stack C: Contact D: Knapsack E: Stone F: Polygon

O(n4) Solution

Now let’s consider the case of adding one more point. We see that
this is essentially just replacing k with two numbers, k1 and k2.
Then we can get an O(n4) solution, which can pass 80% of the
test cases:

f ∗l ,r = max
l<k1<k2≤r

{fl+1,k1−1 + fk1+1,k2−1 + fk2+1,r−1 + al · ak1 · ak2}

fl ,r = max
{

f ∗l ,r , fl+1,r
}

Lee Zong Yu, Pu Fanyi, Zhou Xuhang Nanyang Technological University
Nanyang Programming Contest 2025 44 / 49



A: Data B: Stack C: Contact D: Knapsack E: Stone F: Polygon

O(n3) Solution

• A simple idea is: can we just enumerate one of the points
between k1, k2? The answer is yes.

• Why? We need to make an observation: for l1 ≤ l2, we have
fl1,r ≥ fl2,r . This is because we can simply choose not to select
any points in the range l1 ∼ l2 − 1, which reduces the problem
to l2 ∼ r .

Lee Zong Yu, Pu Fanyi, Zhou Xuhang Nanyang Technological University
Nanyang Programming Contest 2025 45 / 49



A: Data B: Stack C: Contact D: Knapsack E: Stone F: Polygon

O(n3) Solution

That is to say, for k(1)
2 ≤ k(2)

2 , when we enumerate k2 = k(2)
2 , we

can fully include the cases where the triangle ⟨l , k1, k(1)
2 ⟩ is formed.

As long as we restrict the rightmost subproblem to be k(2)
2 + 1 ∼ r ,

we can cover all triangles ⟨l , k1, k(1)
2 ⟩, without forcing l and k(2)

2 to
be connected by an edge.

Lee Zong Yu, Pu Fanyi, Zhou Xuhang Nanyang Technological University
Nanyang Programming Contest 2025 46 / 49



A: Data B: Stack C: Contact D: Knapsack E: Stone F: Polygon

O(n3) Solution

Similarly, we can also allow l to move. We may arbitrarily discard
some points in the range l ∼ l ′ − 1, so that the triangle becomes
⟨l ′, k1, k(1)

2 ⟩.
In this way, the subproblems are formed, and by enumerating k2 we
can simply decompose the problem into l ∼ k2 and k2 + 1 ∼ r .
This works because the actual triangle ⟨l , k1, k(1)

2 ⟩ is completely
free, only needing to satisfy l < k1 < k(1)

2 ≤ k(2)
2 . In other words,

this is exactly fl ,k(2)
2

:

fl ,r = max
l≤k≤r

{fl ,k + fk+1,r}

Lee Zong Yu, Pu Fanyi, Zhou Xuhang Nanyang Technological University
Nanyang Programming Contest 2025 47 / 49



A: Data B: Stack C: Contact D: Knapsack E: Stone F: Polygon

O(n3) Solution

• The solution is already nearly perfect, but it seems that
something is still missing.

• When k = r , we need to handle it separately. If l and r are
connected, we need to find a point k and divide the problem
into subproblems:

max
l<k<r

{fl+1,k−1 + fk+1,r−1 + al · ak · ar}

Lee Zong Yu, Pu Fanyi, Zhou Xuhang Nanyang Technological University
Nanyang Programming Contest 2025 48 / 49



A: Data B: Stack C: Contact D: Knapsack E: Stone F: Polygon

O(n3) Solution

So, the final answer is:

fl ,r = max

{
max

l≤k<r

(
fl ,k + fk+1,r

)
,

max
l<k<r

(
fl+1,k−1 + fk+1,r−1 + al · ak · ar

)}

Lee Zong Yu, Pu Fanyi, Zhou Xuhang Nanyang Technological University
Nanyang Programming Contest 2025 49 / 49


	A: Data
	B: Stack
	C: Contact
	D: Knapsack
	E: Stone
	F: Polygon

