
A: Triangle B: Tree 2 C: Subsequence 2 D: Game E: Eating

Nanyang Programming Contest 2025
Stage 2: The Second Contest

Lee Zong Yu, Pu Fanyi, Zhou Xuhang

Nanyang Technological University

05 April 2025

Lee Zong Yu, Pu Fanyi, Zhou Xuhang Nanyang Technological University
Nanyang Programming Contest 2025 1 / 48

A: Triangle B: Tree 2 C: Subsequence 2 D: Game E: Eating

• Easy
• Problem A: Triangle - Math & Two Pointer
• Problem B: Tree 2 - Tree Structures

• Medium
• Problem C: Subsequence 2 - DP or Two Pointer
• Problem D: Game - DP

• Hard
• Problem E: Eating - Greedy, Implementation

Lee Zong Yu, Pu Fanyi, Zhou Xuhang Nanyang Technological University
Nanyang Programming Contest 2025 2 / 48

A: Triangle B: Tree 2 C: Subsequence 2 D: Game E: Eating

Problem A: Triangle

Problem Author: Lee Zong Yu & Pu Fanyi
Developement Pu Fanyi

Editorial: Pu Fanyi

Lee Zong Yu, Pu Fanyi, Zhou Xuhang Nanyang Technological University
Nanyang Programming Contest 2025 3 / 48

A: Triangle B: Tree 2 C: Subsequence 2 D: Game E: Eating

Triangle [a = b]

0 1 2 3 4

0

1

2

3

4

5 points

4 points

3 points

2 points

1 points

y= 4− x

s = (a + 1) + a + · · ·+ 1 =
(a + 2)(a + 1)

2
Lee Zong Yu, Pu Fanyi, Zhou Xuhang Nanyang Technological University
Nanyang Programming Contest 2025 4 / 48

A: Triangle B: Tree 2 C: Subsequence 2 D: Game E: Eating

Triangle [O(max{a, b})]

0 1 2 3 4 5 6 7 8

0

1

2

3

4

5

6

y a− a
b
· x

y= a− a
b
· x

Count (x , y):
y ≤ a − a

b x

Lee Zong Yu, Pu Fanyi, Zhou Xuhang Nanyang Technological University
Nanyang Programming Contest 2025 5 / 48

A: Triangle B: Tree 2 C: Subsequence 2 D: Game E: Eating

Triangle [O(max{a, b})]

For all x ∈ [0, b], we need:

0 ≤ y ≤ a − a
b x

So for one x , we have 1 +
⌊
a − a

b x
⌋

valid y.
So the answer is:

b∑
x=0

1 +
⌊
a − a

b x
⌋

Lee Zong Yu, Pu Fanyi, Zhou Xuhang Nanyang Technological University
Nanyang Programming Contest 2025 6 / 48

A: Triangle B: Tree 2 C: Subsequence 2 D: Game E: Eating

Triangle [O(logmax{a, b})]

Lee Zong Yu, Pu Fanyi, Zhou Xuhang Nanyang Technological University
Nanyang Programming Contest 2025 7 / 48

A: Triangle B: Tree 2 C: Subsequence 2 D: Game E: Eating

Triangle [O(logmax{a, b})]

For simplicity:

△ =
□+⧹

2
It is easy to know that

□ = (a + 1)(b + 1)

So the question is to calculate ⧹.

Lee Zong Yu, Pu Fanyi, Zhou Xuhang Nanyang Technological University
Nanyang Programming Contest 2025 8 / 48

A: Triangle B: Tree 2 C: Subsequence 2 D: Game E: Eating

Triangle [O(logmax{a, b})]

An observation is
⧹ = ⧸

So we need to count (x , y):

y =
a
b x =⇒ ax = by

Let c = ax = by , we have a, b | c, which is

c = k · lcm(a, b), k ∈ Z

Lee Zong Yu, Pu Fanyi, Zhou Xuhang Nanyang Technological University
Nanyang Programming Contest 2025 9 / 48

A: Triangle B: Tree 2 C: Subsequence 2 D: Game E: Eating

Triangle [O(logmax{a, b})]

And we have constrain 0 ≤ c ≤ ab as 0 ≤ x ≤ b, 0 ≤ y ≤ a.

0 ≤ k · lcm(a, b) ≤ ab =⇒ 0 ≤ k ≤ ab
lcm(a, b) = gcd(a, b)

So
⧹ = gcd(a, b) + 1

Which means the answer is

△ =
□+⧹

2 =
(a + 1)(b + 1) + gcd(a, b) + 1

2
We can use Euclidean algorithm to calculate gcd(a, b) in
O(logmax{a, b}) time. (Or std::gcd in C++, math.gcd in
Python)

Lee Zong Yu, Pu Fanyi, Zhou Xuhang Nanyang Technological University
Nanyang Programming Contest 2025 10 / 48

https://en.wikipedia.org/wiki/Euclidean_algorithm
https://en.cppreference.com/w/cpp/numeric/gcd
https://docs.python.org/3/library/math.html#math.gcd

A: Triangle B: Tree 2 C: Subsequence 2 D: Game E: Eating

Triangle [Optional, Bézout’s Identity]

At first, I didn’t find ⧹ = ⧸, so I tried to solve ⧹ directly.
We can have:

y = a − a
b x =⇒ ax + by = ab

This is a classic Linear Diophantine equation, which can be easily
solved using Extended Euclidean Algorithm and Bézout’s identity.
This approach also has a time complexity of O(logmax{a, b}).

Lee Zong Yu, Pu Fanyi, Zhou Xuhang Nanyang Technological University
Nanyang Programming Contest 2025 11 / 48

https://cp-algorithms.com/algebra/linear-diophantine-equation.html
https://en.wikipedia.org/wiki/Bézout_identity

A: Triangle B: Tree 2 C: Subsequence 2 D: Game E: Eating

Triangle [Optional, Pick’s theorem]

Theorem (Pick’s theorem)
Suppose that a polygon has integer coordinates for all of its
vertices:

A = I + B2 − 1

• A is the area of the polygon
• I is the number of interior points
• B is the number of boundary points

Lee Zong Yu, Pu Fanyi, Zhou Xuhang Nanyang Technological University
Nanyang Programming Contest 2025 12 / 48

A: Triangle B: Tree 2 C: Subsequence 2 D: Game E: Eating

Triangle [Optional, Pick’s theorem]

So the answer is

I + B =

(
A− B2 + 1

)
+ B = A+

B
2 + 1 =

ab
2 + 1 +

B
2

So the question is the find B, which is

a + b − 1 +⧹ = a + b + gcd(a, b)

So
I + B =

ab + a + b + gcd(a, b)
2 + 1

Lee Zong Yu, Pu Fanyi, Zhou Xuhang Nanyang Technological University
Nanyang Programming Contest 2025 13 / 48

A: Triangle B: Tree 2 C: Subsequence 2 D: Game E: Eating

Problem B: Tree 2

Problem Author: Pu Fanyi
Developement Pu Fanyi

Editorial: Pu Fanyi

Lee Zong Yu, Pu Fanyi, Zhou Xuhang Nanyang Technological University
Nanyang Programming Contest 2025 14 / 48

A: Triangle B: Tree 2 C: Subsequence 2 D: Game E: Eating

Tree [30 pts?]

• Question: find the distance to the root for all nodes
• Idea: for all nodes, “climbing” to the root

1: procedure Climbing(o: Node)
2: r ← root of the tree
3: d ← 0 ▷ depth of o
4: while o ̸= r do
5: o ← po ▷ “Climb” to the top
6: d ← d + 1
7: end while
8: return d
9: end procedure

Lee Zong Yu, Pu Fanyi, Zhou Xuhang Nanyang Technological University
Nanyang Programming Contest 2025 15 / 48

A: Triangle B: Tree 2 C: Subsequence 2 D: Game E: Eating

Tree [60 pts!]

• This algo actually earns 60 pts!
• Because the tree generated randomly using pi = rand(1, i − 1)

has an expected depth of O(log n).
• The proof will be at the end of the solution.

Lee Zong Yu, Pu Fanyi, Zhou Xuhang Nanyang Technological University
Nanyang Programming Contest 2025 16 / 48

A: Triangle B: Tree 2 C: Subsequence 2 D: Game E: Eating

Tree [100 pts]

• DFS and BFS is a good idea for most of the tree problem
• Because this method allows the entire tree to be traversed in

a specific order.
• In both types of search, the parent node always arrives before

the child nodes.
• So, if we let di be the distance of node i , during our

DFS/BFS, dpi is always computed before di .

Lee Zong Yu, Pu Fanyi, Zhou Xuhang Nanyang Technological University
Nanyang Programming Contest 2025 17 / 48

A: Triangle B: Tree 2 C: Subsequence 2 D: Game E: Eating

Tree [100 pts]

1: procedure DFS(o: Node)
2: for s in SonOf(o) do
3: ds ← do + 1 ▷ Calculate the depth of o’s son
4: DFS(s) ▷ DFS s recursively
5: end for
6: end procedure

Lee Zong Yu, Pu Fanyi, Zhou Xuhang Nanyang Technological University
Nanyang Programming Contest 2025 18 / 48

A: Triangle B: Tree 2 C: Subsequence 2 D: Game E: Eating

Tree [100 pts]

1: procedure BFS(r : Root)
2: q ← Empty Queue
3: Enqueue(q, r)
4: while q is not empty do
5: o ←Dequeue(q) ▷ Choose the front of the q as o
6: for s in SonOf(o) do
7: ds ← do + 1 ▷ Calculate the depth of o’s son
8: Enqueue(q, s) ▷ Push s to the back of the queue
9: end for

10: end while
11: end procedure

Lee Zong Yu, Pu Fanyi, Zhou Xuhang Nanyang Technological University
Nanyang Programming Contest 2025 19 / 48

A: Triangle B: Tree 2 C: Subsequence 2 D: Game E: Eating

Tree [Proof of 60 pts]

Let
di = E[depth of node i]

As pi ∼ uniform(1, i − 1), we can have

di = Ep∼uniform(1,i−1) [dp + 1]
= Ep∼uniform(1,i−1) [dp] + 1

= 1 +
1

i − 1

i−1∑
p=1

dp

= 1 +
1

i − 1di−1 +
1

i − 1

i−2∑
p=1

dp

Lee Zong Yu, Pu Fanyi, Zhou Xuhang Nanyang Technological University
Nanyang Programming Contest 2025 20 / 48

A: Triangle B: Tree 2 C: Subsequence 2 D: Game E: Eating

Tree [Proof of 60 pts]

As

di = 1 +
1

i − 1

i−1∑
p=1

dp

so
i−1∑
p=1

dp = (i − 1)(dp − 1)

Thus

di = 1 +
1

i − 1di−1 +
1

i − 1

i−2∑
p=1

dp

= 1 +
1

i − 1di−1 +
1

i − 1 · (i − 2)(di−1 − 1)

=
1

i − 1 + di−1 =
i−1∑
j=1

1
i

Lee Zong Yu, Pu Fanyi, Zhou Xuhang Nanyang Technological University
Nanyang Programming Contest 2025 21 / 48

A: Triangle B: Tree 2 C: Subsequence 2 D: Game E: Eating

Tree [Proof of 60 pts]

So

E[depth of node i] =
i−1∑
j=1

1
i

And this is a very famous formula called Harmonic series
It can be easily prooved that

E[depth of node i] =
i−1∑
j=1

1
i ≤ 1 +

∫ i−1

1

1
x dx = 1 + log(i − 1)

Lee Zong Yu, Pu Fanyi, Zhou Xuhang Nanyang Technological University
Nanyang Programming Contest 2025 22 / 48

https://en.wikipedia.org/wiki/Harmonic_series_(mathematics)

A: Triangle B: Tree 2 C: Subsequence 2 D: Game E: Eating

Problem C: Subsequence 2

Problem Author: Lee Zong Yu
Developement Lee Zong Yu

Editorial: Lee Zong Yu

Lee Zong Yu, Pu Fanyi, Zhou Xuhang Nanyang Technological University
Nanyang Programming Contest 2025 23 / 48

A: Triangle B: Tree 2 C: Subsequence 2 D: Game E: Eating

Abridged Problem Statement

Abridged Problem Statement
Given two non-descending arrays, find the Longest Common
Subsequence (LCS) between the two arrays

• Subtask 1: 1 ≤ N,M ≤ 20
• Subtask 2: 1 ≤ N,M ≤ 500
• Subtask 3: 1 ≤ N,M ≤ 10000
• Subtask 4: 1 ≤ N,M ≤ 100000

Lee Zong Yu, Pu Fanyi, Zhou Xuhang Nanyang Technological University
Nanyang Programming Contest 2025 24 / 48

A: Triangle B: Tree 2 C: Subsequence 2 D: Game E: Eating

Subtask 1

Complete Search

• Do a complete search (brute force) over all the possible
subsequences of array A.
• During the search, an array C is constructed. To verify that

array C is a subsequence of array B, you may enumerate the
array B and maintain a "pointer" on array C .
• During the enumeration of array B, if the current element is

same as the element the pointer is pointing to at array C ,
increment the pointer.

Lee Zong Yu, Pu Fanyi, Zhou Xuhang Nanyang Technological University
Nanyang Programming Contest 2025 25 / 48

A: Triangle B: Tree 2 C: Subsequence 2 D: Game E: Eating

Implementation and Analysis of Algorithm

• To implement the algorithm, you may write a recursive
function (backtracking). Alternatively, you may use a
bitmask to write an iterative function. Please check the
code for the implementation.
• The time complexity is as such:

• There are 2N possible subsequences (Each element has two
possibilities - chosen in the subsequence or removed from the
array).

• To verify whether each potential subsequence is a subsequence
of B, you have to do an O(N + M) enumeration. That is
O(N) for the enumeration on the subsequence C and O(M)
for the enumeration on the array B.

• The total time complexity is O(2N · (N + M))

Lee Zong Yu, Pu Fanyi, Zhou Xuhang Nanyang Technological University
Nanyang Programming Contest 2025 26 / 48

A: Triangle B: Tree 2 C: Subsequence 2 D: Game E: Eating

Subtask 2

• 1 ≤ N,M ≤ 500
• With this constraint, O(N ×M) solution are able to pass.

Therefore, it is just a classic DP solution.

Dynamic Programming (DP)

• DP[i][j] stores the length of LCS of the array [a0, a1, . . . , ai−1]
and the array [a0, a1, . . . , aj−1].
• The transition between the states is as follows:

• DP[i][j] = DP[i - 1][j - 1], if ai == aj and i ≥ 1, j ≥ 1.
• DP[i][j] = max(DP[i - 1][j - 1], DP[i][j - 1]), otherwise (if i − 1

or j − 1 would be negative, just ignore it).
• The base state DP[0][0] = 0.
• The answer is DP[N][M] You may build a bottom-up DP or

top-down DP.

Lee Zong Yu, Pu Fanyi, Zhou Xuhang Nanyang Technological University
Nanyang Programming Contest 2025 27 / 48

A: Triangle B: Tree 2 C: Subsequence 2 D: Game E: Eating

Subtask 3

Motivation
• 1 ≤ N,M ≤ 10000
• With this constraint, O(N ×M) solution are still able to pass.

However, if the two-dimensional DP array is constructed with
size N ×M, your solution would get Memory Limit Exceeded
(MLE). This is because the space complexity is O(N ×M)
• From SC1006, if the DP arrays store 32-bit integers, what is

the maximum number of bytes used by the DP array?
• 32-bit is equivalent to 4 bytes. If N = M = 10000, the

number of bytes is N ×M × 4 = 4× 108B ≈ 381MB.
• The memory limit is 512MB. Therefore, including some

required memory storage (TODO how much), the DP array
would use too much memory space.
• The idea is to use "Rolling DP" to compress the space to

O(N + M).
Lee Zong Yu, Pu Fanyi, Zhou Xuhang Nanyang Technological University
Nanyang Programming Contest 2025 28 / 48

A: Triangle B: Tree 2 C: Subsequence 2 D: Game E: Eating

Rolling DP

“Rolling DP”

• Notice that, for any i , all the DP with first dimension is i only
depends on the DP with first dimension is i − 1. That is,
given i , ∀j ∈ [0,M], DP[i][j] only depends on DP[i − 1][j] or
DP[i − 1][j − 1].
• If bottom-up DP is used (Nested Loop of i followed by j), it is

not required to store any states with first dimension ≤ i − 2.
• Therefore, the transition is as follows:

• DP[i%2][j] = DP[(i − 1)%2][j − 1], if ai == aj and
i ≥ 1, j ≥ 1.

• DP[i%2][j] = max(DP[(i − 1)%2][j], DP[i%2][j − 1]),
otherwise (if i − 1 or j − 1 would be negative, just ignore it).

• The answer is DP[N%2][M]

Lee Zong Yu, Pu Fanyi, Zhou Xuhang Nanyang Technological University
Nanyang Programming Contest 2025 29 / 48

A: Triangle B: Tree 2 C: Subsequence 2 D: Game E: Eating

Subtask 4

• 1 ≤ N,M ≤ 100000. O(NM) solution would TLE
• The idea is to take advantage that arrays A and B are in

ascending order.
• For a given i and j , if ai < bj and denote i ′ > i as the first

index such that ai ′ ≥ bj , we know that for all j ′′ ≥ j and
i ≤ i ′′ ≤ i ′, DP[i ′′][j ′′] = DP[i][j].
• With this, we do not need to compute the answer to many

DP states. We just need to increment i to i ′ and compute the
solution. Likewise, if ai > bj , we increment j until ai ≤ bj .
• If ai = bj , then we increment both i and j by one and add 1

to the answer.
• This leads to a two pointer algorithm.

Lee Zong Yu, Pu Fanyi, Zhou Xuhang Nanyang Technological University
Nanyang Programming Contest 2025 30 / 48

A: Triangle B: Tree 2 C: Subsequence 2 D: Game E: Eating

Problem D: Game

Problem Author: Zhou Xuhang
Developement Zhou Xuhang

Editorial: Zhou Xuhang

Lee Zong Yu, Pu Fanyi, Zhou Xuhang Nanyang Technological University
Nanyang Programming Contest 2025 31 / 48

A: Triangle B: Tree 2 C: Subsequence 2 D: Game E: Eating

Abridged Problem Statement?

Abridged Problem Statement
Given an array that consists of integers. Use the set of cards to
move to get the maximal sum.

• For all task, 1 ≤ N ≤ 105, 1 ≤ R ≤ 109, 0 ≤ |a| ≤ 109

• Subtask1 & 2: K = 1
• Subtask3: K = 2
• Subtask4: K = 4
• Subtask5: K = 8

Lee Zong Yu, Pu Fanyi, Zhou Xuhang Nanyang Technological University
Nanyang Programming Contest 2025 32 / 48

A: Triangle B: Tree 2 C: Subsequence 2 D: Game E: Eating

Observation

Observation 1
The total distance moved is fixed until the set of movement cards
is flushed.

Observation 2
Always use the energy card as soon as possible.

Lee Zong Yu, Pu Fanyi, Zhou Xuhang Nanyang Technological University
Nanyang Programming Contest 2025 33 / 48

A: Triangle B: Tree 2 C: Subsequence 2 D: Game E: Eating

Subtask 1 & 2

• K = 1. (There is only one movement card)
• The movement sequence is fixed. Just use the following

strategy:
• Use the energy card.
• Use the movement card, check whether the current energy is

negative.
• If the destination is not reached, the cards are replenished.

Repeat this strategy.

Motivation
These subtasks are designed for contestants to verify their
understanding of the problem statement, especially about
"whether an energy card could be used when we have
already arrived at the destination".

Lee Zong Yu, Pu Fanyi, Zhou Xuhang Nanyang Technological University
Nanyang Programming Contest 2025 34 / 48

A: Triangle B: Tree 2 C: Subsequence 2 D: Game E: Eating

Subtask 3

• K = 2 (There are only two movement cards)
• If we use the energy card first, then the only two possible

strategies are as follows:
• Use the first movement card, then the second movement card.
• Use the second movement card, then the first movement card.

• It is easy to compare which is better (by implementing both
strategies and taking the better one). Just be careful about if
there is a sudden death situation.

Lee Zong Yu, Pu Fanyi, Zhou Xuhang Nanyang Technological University
Nanyang Programming Contest 2025 35 / 48

A: Triangle B: Tree 2 C: Subsequence 2 D: Game E: Eating

Subtask 4

• K = 4
• Based on the two observations and the methodology we used

in subtask 3, we can have the following basic idea.

Key Conclusion
If we already stand on the pillar at position x , we do not care what
happened before that. We only want to have higher energy at the
current time.

Lee Zong Yu, Pu Fanyi, Zhou Xuhang Nanyang Technological University
Nanyang Programming Contest 2025 36 / 48

A: Triangle B: Tree 2 C: Subsequence 2 D: Game E: Eating

Subtask 4

• Based on the conclusion, let’s start with position 0.
• Firstly, we use the energy card and get Energy = R.
• Then, we perform a complete search over all possible orders of

the movement cards used.
• Our goal is to find the best order which can provide us the

highest Energy without sudden death.
• The complexity in this step is K · K ! (There are K ! possible

permutations of movement cards, and we perform an iteration
over the movement cards for each possible permutation).

Lee Zong Yu, Pu Fanyi, Zhou Xuhang Nanyang Technological University
Nanyang Programming Contest 2025 37 / 48

A: Triangle B: Tree 2 C: Subsequence 2 D: Game E: Eating

Subtask 4

• Whatever the best order is, we will always stand at
∑k

i bi th
pillar.
• And we hold the highest possible Energy now (through

complete search).
• Now our deck of cards is flushed. In the next round, our goal

is similar to the first round.
• Our goal is to find the best order which can provide us the

highest ∆Energy without sudden death.
• The complexity in this step is K · K !.

Lee Zong Yu, Pu Fanyi, Zhou Xuhang Nanyang Technological University
Nanyang Programming Contest 2025 38 / 48

A: Triangle B: Tree 2 C: Subsequence 2 D: Game E: Eating

Subtask 4

• This kind of consideration is called Optimal substructure.
• Just repeat this complete search until she arrives at the

destination.

Time Complexity
In each round, we need a complete search, and we have N/

∑
bi

rounds.
The Time Complexity is O

(
N∑

bi
K · K !

)
, which cannot pass

subtask 5.
But if you can solve the subtask, it is already a huge success!

Lee Zong Yu, Pu Fanyi, Zhou Xuhang Nanyang Technological University
Nanyang Programming Contest 2025 39 / 48

A: Triangle B: Tree 2 C: Subsequence 2 D: Game E: Eating

Subtask 5

• We would like to introduce a type of dynamic programming
problem here called Bitmask DP.
• The dynamic programming state is DP[i][bitmask]

representing the best Energy we could have when
• we stand at i-th pillar
• The remaining cards we hold in our hand are encoded by the

bitmask (which is explained below).
• bitmask is an integer (we understood it in binary

representation), where the jth bit from Least Significant Bit is
on (= 1) implies that we still have the jth card on hand.

Explaination
For example DP[23][11]. We have 1110 = 10112.
The value of DP[23][11] is the maximal possible energy he can get
when he stands in the 23rd Pillar and holds the first, second and
the fourth cards.

Lee Zong Yu, Pu Fanyi, Zhou Xuhang Nanyang Technological University
Nanyang Programming Contest 2025 40 / 48

A: Triangle B: Tree 2 C: Subsequence 2 D: Game E: Eating

Subtask 5

State Transition
DP[0][111111112] = R(used the energy card)
→ DP[b[1]][111111102] = max(itself ,DP[0][111111112] + a[b[1]]
→ DP[b[2]][111111012] = max(itself ,DP[0][111111112] + a[b[2]]
. . .
More generally, for DP[i][j] we can try to use each remaining card -
condition:(j&2k−1 ̸= 0)
DP[i + b[k]][j ⊕ 2k−1] = max(itself ,DP[i][j] + a[i + b[k]])
• Special case 1:If j ⊕ 2k−1 = 0, we flush the set of cards and

use the energy card immediately.
• Special case 2:If i + b[k] > N, we reached and destination.

Lee Zong Yu, Pu Fanyi, Zhou Xuhang Nanyang Technological University
Nanyang Programming Contest 2025 41 / 48

A: Triangle B: Tree 2 C: Subsequence 2 D: Game E: Eating

Subtask 5

Time & Space Complexity
The size of the state space is N ∗ 2K and each state have
bitcount(K) transitions.
• Space Complexity: O(N ∗ 2K)

• Time Complexity: O(NK ∗ 2K)

Lee Zong Yu, Pu Fanyi, Zhou Xuhang Nanyang Technological University
Nanyang Programming Contest 2025 42 / 48

A: Triangle B: Tree 2 C: Subsequence 2 D: Game E: Eating

Problem E: Eating

Problem Author: Zhou Xuhang
Developement Zhou Xuhang

Editorial: Zhou Xuhang

Lee Zong Yu, Pu Fanyi, Zhou Xuhang Nanyang Technological University
Nanyang Programming Contest 2025 43 / 48

A: Triangle B: Tree 2 C: Subsequence 2 D: Game E: Eating

Abridged Problem Statement

Given n cakes with sizei .

Abridged Statement (Optimization Problem)
You can merge two cakes M times. And you can eat the cake by
unit x infinite times, where x should be less than half the cake size.
But you cannot eat the cake whose size is smaller than K .
Your goal is eat the cake as much as possible.

Lee Zong Yu, Pu Fanyi, Zhou Xuhang Nanyang Technological University
Nanyang Programming Contest 2025 44 / 48

A: Triangle B: Tree 2 C: Subsequence 2 D: Game E: Eating

Observation

Observation 1
We could merge first and eat the cakes after that.
As you can eat the cake infinite times, you can eat 1 unit until the
cake’s size becomes K .

Observation 2
When the cake’s size become K, only one bite on this cake in the
future. Thus we always eat K/2 unit in this case.

Observation 3
Maximize the cake you eat means minimize your waste.

Lee Zong Yu, Pu Fanyi, Zhou Xuhang Nanyang Technological University
Nanyang Programming Contest 2025 45 / 48

A: Triangle B: Tree 2 C: Subsequence 2 D: Game E: Eating

Greedy

Intuitive thinking
Let’s denote w[i] as the remaining unit in the end.
• w [i] = (k + 1)/2 if a[i] >= k,
• w [i] = a[i] if a[i] < k.

To minimize the sum of w[i], a intuitive solution here is sort the
w[i] and remove the first M w[i] in decreasing order.

Lee Zong Yu, Pu Fanyi, Zhou Xuhang Nanyang Technological University
Nanyang Programming Contest 2025 46 / 48

A: Triangle B: Tree 2 C: Subsequence 2 D: Game E: Eating

Greedy

Issue?
But there is another better choice:
We can merge two cakes both of size k >= a[i] > (k + 1)/2. In
this case, we not only eliminated the wastage of one cake, but also
decrease another cake’s waste value from a[i] to (k + 1)/2.

Lee Zong Yu, Pu Fanyi, Zhou Xuhang Nanyang Technological University
Nanyang Programming Contest 2025 47 / 48

A: Triangle B: Tree 2 C: Subsequence 2 D: Game E: Eating

Greedy

Hence, our solution is:
First merge all cake with size (k + 1)/2 ≤ a[i] < k in decreasing
order.
After that, we eliminate the cake by merging to a large cake one
by one.

Lee Zong Yu, Pu Fanyi, Zhou Xuhang Nanyang Technological University
Nanyang Programming Contest 2025 48 / 48

	A: Triangle
	B: Tree 2
	C: Subsequence 2
	D: Game
	E: Eating

