
A: Lucky Seven G: Tree F: Subseqeunce D: Multiset B: Distance E: Operations C: Graph H: Bye Bye

Nanyang Programming Contest 2025
Stage 1: The First Contest

Lee Zong Yu, Pu Fanyi, Zhou Xuhang

Nanyang Technological University

15 March 2025

Lee Zong Yu, Pu Fanyi, Zhou Xuhang Nanyang Technological University
Nanyang Programming Contest 2025 1 / 41

A: Lucky Seven G: Tree F: Subseqeunce D: Multiset B: Distance E: Operations C: Graph H: Bye Bye

• Trivial
• Problem A: Lucky Seven - Implementation

• Easy
• Problem G: Tree - Tree Structures
• Problem F: Subsequence - Sliding Windows

• Medium
• Problem D: Multiset - Greedy, Sorting
• Problem B: Distance - Binary Search

• Hard
• Problem E: Operations - Knapsack DP
• Problem C: Graph - Dijkstra, Heap, Greedy

• Evil
• Problem H: Bye Bye - Game Theory

Lee Zong Yu, Pu Fanyi, Zhou Xuhang Nanyang Technological University
Nanyang Programming Contest 2025 2 / 41

A: Lucky Seven G: Tree F: Subseqeunce D: Multiset B: Distance E: Operations C: Graph H: Bye Bye

Problem A: Lucky Seven

Problem Source: CodeChef LUCKYSEVEN
Editorial: Lee Zong Yu

Lee Zong Yu, Pu Fanyi, Zhou Xuhang Nanyang Technological University
Nanyang Programming Contest 2025 3 / 41

https://www.codechef.com/problems/LUCKYSEVEN

A: Lucky Seven G: Tree F: Subseqeunce D: Multiset B: Distance E: Operations C: Graph H: Bye Bye

Lucky Seven

• Abridged Statement: Print the 7-th character.
• Just print(s[6]) because the string stored in most language

are in 0-indexed

Lee Zong Yu, Pu Fanyi, Zhou Xuhang Nanyang Technological University
Nanyang Programming Contest 2025 4 / 41

A: Lucky Seven G: Tree F: Subseqeunce D: Multiset B: Distance E: Operations C: Graph H: Bye Bye

Problem G: Tree

Problem Author: Lee Zong Yu
Developement Lee Zong Yu

Editorial: Lee Zong Yu

Lee Zong Yu, Pu Fanyi, Zhou Xuhang Nanyang Technological University
Nanyang Programming Contest 2025 5 / 41

A: Lucky Seven G: Tree F: Subseqeunce D: Multiset B: Distance E: Operations C: Graph H: Bye Bye

Tree

• Abridged Statement: Print the number of nodes with k
children for each k.
• To solve this problem, you need to understand what is a

rooted tree. When a tree is rooted, each node (except the
root) will have exactly 1 parent node (i.e., the node connected
to it that is closer to the root) and a number of children
nodes.
• Therefore, the number of children is the number of edge

connected to it −1 (except for root).

Lee Zong Yu, Pu Fanyi, Zhou Xuhang Nanyang Technological University
Nanyang Programming Contest 2025 6 / 41

A: Lucky Seven G: Tree F: Subseqeunce D: Multiset B: Distance E: Operations C: Graph H: Bye Bye

Direct Address Table (Lookup Table)

• Alternatively, you can enumerate the parent from 2 to n. The
number of time a number appears as parent is the number of
children.
• Then, you just need to have two arrays one act as a lookup

table of how many children that node have and another act as
another lookup table of how many node with that amount of
children

Lee Zong Yu, Pu Fanyi, Zhou Xuhang Nanyang Technological University
Nanyang Programming Contest 2025 7 / 41

A: Lucky Seven G: Tree F: Subseqeunce D: Multiset B: Distance E: Operations C: Graph H: Bye Bye

Direct Address Table (Lookup Table)

A

B

E F

C D

G
+1 +

1

+1

+
1 +

1 +
1

Lee Zong Yu, Pu Fanyi, Zhou Xuhang Nanyang Technological University
Nanyang Programming Contest 2025 8 / 41

A: Lucky Seven G: Tree F: Subseqeunce D: Multiset B: Distance E: Operations C: Graph H: Bye Bye

Problem F: Subsequence

Problem Source: Atcoder (ABC 115c)
Editorial: Lee Zong Yu

Lee Zong Yu, Pu Fanyi, Zhou Xuhang Nanyang Technological University
Nanyang Programming Contest 2025 9 / 41

https://atcoder.jp/contests/abc115/tasks/abc115_c?lang=en

A: Lucky Seven G: Tree F: Subseqeunce D: Multiset B: Distance E: Operations C: Graph H: Bye Bye

Subsequence

• Crucial Observation: It is always optimal to choose elements
that are neighbouring to each other in the sorted array.
• Explain: Suppose if the it is not the case, there exists an

optimal solution where the elements is not contiguous, you
can always replace the elements within the gap and make
them neighbouring, and this solution is at most the optimal.
And since it is optimal, this way is still optimal.

Lee Zong Yu, Pu Fanyi, Zhou Xuhang Nanyang Technological University
Nanyang Programming Contest 2025 10 / 41

A: Lucky Seven G: Tree F: Subseqeunce D: Multiset B: Distance E: Operations C: Graph H: Bye Bye

Algorithm

• Sort the array
• Maintain a window of size k. Suppose if the start of the

window is placed at position i , and end of the window is
placed at position i + k − 1. The answer is just ai+k−1 − ai .
• with this, you can slide the window from position 0 to position

n − k and get the minimum difference.

Lee Zong Yu, Pu Fanyi, Zhou Xuhang Nanyang Technological University
Nanyang Programming Contest 2025 11 / 41

A: Lucky Seven G: Tree F: Subseqeunce D: Multiset B: Distance E: Operations C: Graph H: Bye Bye

Problem D: Multiset

Problem Source: Hackerrank (Matching Sets)
Editorial: Lee Zong Yu, Pu Fanyi

Lee Zong Yu, Pu Fanyi, Zhou Xuhang Nanyang Technological University
Nanyang Programming Contest 2025 12 / 41

https://www.hackerrank.com/contests/w22/challenges/box-moving

A: Lucky Seven G: Tree F: Subseqeunce D: Multiset B: Distance E: Operations C: Graph H: Bye Bye

Possible?

First observation: The answer is −1 if and only if the sum of
elements of X and sum of elements in Y is different.
Proof
(←) The operation −1 at some index i and +1 at some index j .
This means that the sum of elements in the multiset remains
unchanged. Therefore, it is impossible to make X = Y if their sum
is different.
(→) This proposition means that it is always possible to make
them equal if the sum of elements is the same. One can just make
all elements in X except the first one to be zero. By this, you can
just always −1 from the first index and +1 to the index j (for all j)
yj times.

Lee Zong Yu, Pu Fanyi, Zhou Xuhang Nanyang Technological University
Nanyang Programming Contest 2025 13 / 41

A: Lucky Seven G: Tree F: Subseqeunce D: Multiset B: Distance E: Operations C: Graph H: Bye Bye

Possible?

x1 x2 x3 x4

Aggregation

S 0 0 0

Distribution

y1 y2 y3 y4

Figure 1: Illustration of the proof in the previous slide

Lee Zong Yu, Pu Fanyi, Zhou Xuhang Nanyang Technological University
Nanyang Programming Contest 2025 14 / 41

A: Lucky Seven G: Tree F: Subseqeunce D: Multiset B: Distance E: Operations C: Graph H: Bye Bye

Greedy

To find the minimum operations required, we can adopt a greedy
strategy.
• Sort both array in ascending order
• The answer is 1

2
∑n

i=1 |xi − yi |

Proof.
• From the previous observation, we know that it is possible

only if the sum of elements of X and Y are the same.
• Therefore, we can separate the operation −1 and +1

independently. That is, one operation is −1 to some index j
with cost 0.5 and another operation is +1 to some index j
with cost 0.5.

Lee Zong Yu, Pu Fanyi, Zhou Xuhang Nanyang Technological University
Nanyang Programming Contest 2025 15 / 41

A: Lucky Seven G: Tree F: Subseqeunce D: Multiset B: Distance E: Operations C: Graph H: Bye Bye

Proof (Cont.)

Proof.
The problem is reduced to finding a one-to-one mapping between
set X and set Y .
• If xi is map with yj , the cost is 0.5 · |yj − xi |.
• The cost of the mapping is 0.5 ·

∑
all mapping |yj − xi |.

The optimal strategy is to choose the smallest x with the smallest
y . You may refer to some similar problems in Geekforgeek (Assign
mice to holes). The proof is by case discussion. Please see here

Lee Zong Yu, Pu Fanyi, Zhou Xuhang Nanyang Technological University
Nanyang Programming Contest 2025 16 / 41

https://hengfengli.github.io/algorithm/2016/05/30/hl-11-connecting-wires.html

A: Lucky Seven G: Tree F: Subseqeunce D: Multiset B: Distance E: Operations C: Graph H: Bye Bye

Problem B: Distance

Problem Source: USACO 2005 Feb. Gold
Development: Lee Zong Yu

Editorial: Lee Zong Yu

Lee Zong Yu, Pu Fanyi, Zhou Xuhang Nanyang Technological University
Nanyang Programming Contest 2025 17 / 41

A: Lucky Seven G: Tree F: Subseqeunce D: Multiset B: Distance E: Operations C: Graph H: Bye Bye

Decision Version of the problem

Given n positions (x),

Abridged Statement (Optimization Problem)
choose k positions such that the minimum distance between any of
the two k positions are maximized.

Decision Version
Given a distance D, is it possible to select k positions, such that
the distance between any two positions is at least D (i.e. the
distance between neighbouring positions is at least D).

Lee Zong Yu, Pu Fanyi, Zhou Xuhang Nanyang Technological University
Nanyang Programming Contest 2025 18 / 41

A: Lucky Seven G: Tree F: Subseqeunce D: Multiset B: Distance E: Operations C: Graph H: Bye Bye

Greedy for answering Decision version

Greedy

• Sort the positions, set the current latest position as negative
infinity (−∞)
• Enumerate the array, if the current position is at least current

latest position +D, then select the current position and set it
to the current latest position.
• If there is at least k position chosen, then the answer is YES.

Lee Zong Yu, Pu Fanyi, Zhou Xuhang Nanyang Technological University
Nanyang Programming Contest 2025 19 / 41

A: Lucky Seven G: Tree F: Subseqeunce D: Multiset B: Distance E: Operations C: Graph H: Bye Bye

Proof of Correctness of Greedy

• The greedy algorithm is essentially implying given D if the
maximum number of positions you can choose with the
aforementioned constraint is greater than or equal to k,
then the answer is YES.
• Instead of giving a full proof of correctness, we show a

reduction that reduces the problem into a classical greedy
problem where the correctness of the solution is well-known
and proven.
• For each of the position xi , we create an interval [xi , xi + D).

Then the problem is reduced to finding the maximum number
of non-overlapping intervals (which is known as Activity
Selection Geeksforgeeks).
• The proof of correctness of the problem can be found at

Section 15.1 in the book introduction of algorithm Book

Lee Zong Yu, Pu Fanyi, Zhou Xuhang Nanyang Technological University
Nanyang Programming Contest 2025 20 / 41

https://www.geeksforgeeks.org/activity-selection-problem-greedy-algo-1/
https://dl.ebooksworld.ir/books/Introduction.to.Algorithms.4th.Leiserson.Stein.Rivest.Cormen.MIT.Press.9780262046305.EBooksWorld.ir.pdf

A: Lucky Seven G: Tree F: Subseqeunce D: Multiset B: Distance E: Operations C: Graph H: Bye Bye

(Cont.) Proof of Reduction

• The optimal strategy for the Activity Selection problem is to
sort the interval by end time and apply the same algorithm as
our greedy algorithm.
• Since in this specially constructed input, the duration of all

intervals are the same, therefore, the order of intervals sort by
end time is same as the order sort by start time (which is the
position).
• Therefore, the reduction is correct and thus, our greedy

algorithm is correct.

Lee Zong Yu, Pu Fanyi, Zhou Xuhang Nanyang Technological University
Nanyang Programming Contest 2025 21 / 41

A: Lucky Seven G: Tree F: Subseqeunce D: Multiset B: Distance E: Operations C: Graph H: Bye Bye

Binary Search the Answer (BSTA)

Complete Search / Brute Force
Enumerate all the D from 1 to 109 and select the last D that
return YES because you know that it is the maximum possible

Monotonicity
A sequence is monotonic if and only if the sequence is
non-decreasing or non-increasing.

Binary Search
There exists a answer A such that ∀D < A, the decision version is
YES and ∀D ≥ A, the decision version is NO. The answer to the
optimization problem is D − 1. Therefore, the sequence of answers
produced by decision problems is monotonic. Therefore, you can
binary search the answer.

Lee Zong Yu, Pu Fanyi, Zhou Xuhang Nanyang Technological University
Nanyang Programming Contest 2025 22 / 41

A: Lucky Seven G: Tree F: Subseqeunce D: Multiset B: Distance E: Operations C: Graph H: Bye Bye

Problem E: Operations

Problem Source: USACO 2015 Dec. Gold
Development: Pu Fanyi

Editorial: Pu Fanyi

Lee Zong Yu, Pu Fanyi, Zhou Xuhang Nanyang Technological University
Nanyang Programming Contest 2025 23 / 41

https://usaco.org/index.php?page=viewproblem2&cpid=574

A: Lucky Seven G: Tree F: Subseqeunce D: Multiset B: Distance E: Operations C: Graph H: Bye Bye

Revisit Knapsack DP

Given n types of items, item of type i has weight wi and value vi .
You have a bag with capacity C . You have to choose the items
such that the sum of items chosen is at most C and the sum of
values should be maximised.
Knapsack Versions

• [Unbounded Version] There are infinite numbers of items of
each type
• [0-1 Version] Each type of item can only be chosen at most

once.

Stanford CS161 Knapsack

Lee Zong Yu, Pu Fanyi, Zhou Xuhang Nanyang Technological University
Nanyang Programming Contest 2025 24 / 41

https://stanford-cs161.github.io/winter2025/assets/files/lecture13-notes.pdf#page=5.41

A: Lucky Seven G: Tree F: Subseqeunce D: Multiset B: Distance E: Operations C: Graph H: Bye Bye

Plus Only

• Let us first consider the case without x ←
⌊ x

2
⌋
.

• In this case, a very simple idea is that we can modify the
Knapsack problem so that each item’s value and weight are
equal.
• Let fi denote the maximum value when the total weight is i .
• We have fi = max{fi−a + a, fi−b + b}

Lee Zong Yu, Pu Fanyi, Zhou Xuhang Nanyang Technological University
Nanyang Programming Contest 2025 25 / 41

A: Lucky Seven G: Tree F: Subseqeunce D: Multiset B: Distance E: Operations C: Graph H: Bye Bye

Plus Only

• One observation is that

fi =
{

i if there exists a way to reach weight i
0 otherwise

• Therefore, we actually have a more concise way to define the
DP array:

gi =

{
1 if there exists a way to reach weight i
0 otherwise

Lee Zong Yu, Pu Fanyi, Zhou Xuhang Nanyang Technological University
Nanyang Programming Contest 2025 26 / 41

A: Lucky Seven G: Tree F: Subseqeunce D: Multiset B: Distance E: Operations C: Graph H: Bye Bye

Plus Only

• Considering a, b > 0, we have

gi =


gi−a ∨ gi−b i > 0
1 i = 0
0 i < 0

• In other words, as long as i − a can be achieved or i − b can
be achieved, i can also be achieved by adding a or b.

Lee Zong Yu, Pu Fanyi, Zhou Xuhang Nanyang Technological University
Nanyang Programming Contest 2025 27 / 41

A: Lucky Seven G: Tree F: Subseqeunce D: Multiset B: Distance E: Operations C: Graph H: Bye Bye

Plus Only

• Then, lets continue thinking. Suppose we already have an
array g ′, where g ′

i indicates that x = i can definitely be
achieved in some way (for example, through a division by 2
operation). Can we obtain the complete g function using +a
and +b?
• The answer is yes, we can slightly modify the equation

gi =


g ′

i ∨ gi−a ∨ gi−b i > 0
1 i = 0
0 i < 0

Lee Zong Yu, Pu Fanyi, Zhou Xuhang Nanyang Technological University
Nanyang Programming Contest 2025 28 / 41

A: Lucky Seven G: Tree F: Subseqeunce D: Multiset B: Distance E: Operations C: Graph H: Bye Bye

Divided by 2

• We consider the case of x ←
⌊ x

2
⌋
.

• Assume we have already obtained the answer without the
division by two operation, g (1). We can obtain the final
answer with the last operation being division by two, g (2), in
the following way:

g (2)
i = g (1)

i ∨ g (1)
2i ∨ g (1)

2i+1

• Finally, based on g (2)
i , we can obtain the final g (3)

i in the same
way as g (1)

i .

Lee Zong Yu, Pu Fanyi, Zhou Xuhang Nanyang Technological University
Nanyang Programming Contest 2025 29 / 41

A: Lucky Seven G: Tree F: Subseqeunce D: Multiset B: Distance E: Operations C: Graph H: Bye Bye

Final Solution

Lee Zong Yu, Pu Fanyi, Zhou Xuhang Nanyang Technological University
Nanyang Programming Contest 2025 30 / 41

A: Lucky Seven G: Tree F: Subseqeunce D: Multiset B: Distance E: Operations C: Graph H: Bye Bye

Problem C: Graph

Problem Source: Atcoder (ABC 305d)
Editorial: Lee Zong Yu

Lee Zong Yu, Pu Fanyi, Zhou Xuhang Nanyang Technological University
Nanyang Programming Contest 2025 31 / 41

https://atcoder.jp/contests/abc305/tasks/abc305_e

A: Lucky Seven G: Tree F: Subseqeunce D: Multiset B: Distance E: Operations C: Graph H: Bye Bye

TLE Solution

Brute Force Solution
For every guard, we apply an Breath First Search (BFS) traversal.
After the guard walks through an edge, reduce its stamina by 1.
Then, stop the traversal when the stamina is 0. A node is said to
be guarded if at least one of the guards reach it. Therefore, just
maintain the state of whether the node is guarded and update
everytime when a guard reach the node.

The time complexity is O(k · (n + m))

Lee Zong Yu, Pu Fanyi, Zhou Xuhang Nanyang Technological University
Nanyang Programming Contest 2025 32 / 41

A: Lucky Seven G: Tree F: Subseqeunce D: Multiset B: Distance E: Operations C: Graph H: Bye Bye

Optimization

• Crucial Observation: For any node u, among all the guards
that can reach node u, the guard with the most stamina left
can reach all the nodes that other guards can reach.
• You only need to process the guard with the most stamina

left.

Lee Zong Yu, Pu Fanyi, Zhou Xuhang Nanyang Technological University
Nanyang Programming Contest 2025 33 / 41

A: Lucky Seven G: Tree F: Subseqeunce D: Multiset B: Distance E: Operations C: Graph H: Bye Bye

Revisit Dijkstra’s Algorithm

• Problem: Given a weighted graph, find the shortest path
from a node u to a node v .
• Algorithm: At every iteration, you maintain a set of nodes

that is visited, and you select the node that is not in the set
of visited nodes and shortest from u to the node. Then, you
include the node in your visited set. It can be done by
maintaining a Min Heap (Priority Queue) that stores the
unvisited node directly connected to the visited nodes.
• For the correctness of Dijkstra algorithm, please refer to your

notes in SC2001.

Lee Zong Yu, Pu Fanyi, Zhou Xuhang Nanyang Technological University
Nanyang Programming Contest 2025 34 / 41

A: Lucky Seven G: Tree F: Subseqeunce D: Multiset B: Distance E: Operations C: Graph H: Bye Bye

Similar ideas

• Algorithm: At every iteration, maintain the set of nodes that
is visited, then choose the node connected to the visited node
with the largest guard’s stamina. At the beginning of the
iteration, the position of the guards is assumed to be
connected to the visited nodes (empty set).
• You may implement the algorithm similar to dijkstra but with

a Max Heap (Priority Queue).
• The proof of correctness is similar to Dijkstra.

Lee Zong Yu, Pu Fanyi, Zhou Xuhang Nanyang Technological University
Nanyang Programming Contest 2025 35 / 41

A: Lucky Seven G: Tree F: Subseqeunce D: Multiset B: Distance E: Operations C: Graph H: Bye Bye

Alternative Explanation

We have an alternative intuitive explanation of the solution.
• At every iteration, we choose the guard with the maximum

stamina. Let’s denote it as h and it is at node u. Then, we
create a new graph with all the nodes connected to u having a
new guard with stamina h − 1. Then, you remove the node u.
• The solution for the new graph with node u is equivalent to

the solution of the old graph. That is if Snew is the solution of
the new graph, Snew

∪
{u} ≡ Sold , where Sold is the solution

for the old graph.
• The iteration ends when there are no nodes left.

Therefore to implement the idea, you just need to maintain a max
heap and pop element at every iteration.

Lee Zong Yu, Pu Fanyi, Zhou Xuhang Nanyang Technological University
Nanyang Programming Contest 2025 36 / 41

A: Lucky Seven G: Tree F: Subseqeunce D: Multiset B: Distance E: Operations C: Graph H: Bye Bye

Illustration

Figure 2: The graph at an iteration
before removal of node

Figure 3: The graph after the
removal of node

Lee Zong Yu, Pu Fanyi, Zhou Xuhang Nanyang Technological University
Nanyang Programming Contest 2025 37 / 41

A: Lucky Seven G: Tree F: Subseqeunce D: Multiset B: Distance E: Operations C: Graph H: Bye Bye

Problem H: Bye Bye

Problem Source: AtCoder (AGC 023d)
Editorial: Pu Fanyi

Lee Zong Yu, Pu Fanyi, Zhou Xuhang Nanyang Technological University
Nanyang Programming Contest 2025 38 / 41

https://atcoder.jp/contests/agc023/tasks/agc023_d?lang=en

A: Lucky Seven G: Tree F: Subseqeunce D: Multiset B: Distance E: Operations C: Graph H: Bye Bye

Solution

• Let’s consider the people living in x1 and xn, that is, the
residents of the leftmost and rightmost apartments.
• WLOG, we assume p1 ≥ pn. Let’s think about what the

person living in xn is considering.
• First, they will realize that they will be the last one to be

dropped off no matter what. Even if there are a large number
of people at xn−1, causing the vehicle to keep moving right,
once the vehicle reaches xn−1, all the residents from x1 to
xn−2 will unanimously vote to go left. This is because by
doing so, the bus will continue moving left, and except for the
person at xn, it will head straight in the direction that
everyone else desires.

Lee Zong Yu, Pu Fanyi, Zhou Xuhang Nanyang Technological University
Nanyang Programming Contest 2025 39 / 41

A: Lucky Seven G: Tree F: Subseqeunce D: Multiset B: Distance E: Operations C: Graph H: Bye Bye

Solution

• At this point, the clever NTU students will realize that the
residents of xn unanimously hope that the residents of x1 get
home as soon as possible. This is because once the residents
of x1 have reached home, the bus will only move to the right
– no one would choose to go left and send the bus into an
uninhabited area.
• In other words, they have accepted their fate of being the last

to arrive. However, once the bus reaches x1, they only need to
wait for a duration of xn − x1 to get home. Since their fate is
fixed once the bus reaches x1, all they need to do is strive to
reach x1 as quickly as possible.

Lee Zong Yu, Pu Fanyi, Zhou Xuhang Nanyang Technological University
Nanyang Programming Contest 2025 40 / 41

A: Lucky Seven G: Tree F: Subseqeunce D: Multiset B: Distance E: Operations C: Graph H: Bye Bye

Solution

• So, can we think that the residents of xn first let themselves
"temporarily stay" at x1, and then we recursively solve the
subproblem? Once the subproblem is solved, we can then
direct the bus toward xn.
• In other words, the original problem is
⟨(x1, . . . , xn), (p1, . . . , pn)⟩. Now, it becomes
⟨(x1, . . . , xn−1), (p1 + pn, p2, . . . , pn−1)⟩. After solving this
subproblem, we add the time to reach xn to the final answer,
which will give the solution to the original problem.
• Similarly, if p1 < pn, then the residents of x1 will do

everything they can to make the bus reach xn quickly.

Lee Zong Yu, Pu Fanyi, Zhou Xuhang Nanyang Technological University
Nanyang Programming Contest 2025 41 / 41

	A: Lucky Seven
	G: Tree
	F: Subseqeunce
	D: Multiset
	B: Distance
	E: Operations
	C: Graph
	H: Bye Bye

